GOLDSIM UPDATE

Najwa Pitois Water Resources and Watershed Committee September 13, 2023

OUTLINE

Background **Uses of Reliability Model Methodology Scenarios** Benefits of Article 56 Carryover Storage Benefits of new banking program **Summary & Next Steps**

SCV WATER

BACKGROUND

BACKGROUND

Board authorized update to the prior Reliability (MBK) Model in Spring of 2021.

- Improve functionality.
- Build expertise in-house.
- New platform that is easier to update and maintain.

In February 2023, presented on model construction and the value of monthly time steps.

Status: we have a functional version of the model that meets our needs to begin running scenarios.

USES OF THE RELIABILITY MODEL

USES OF RELIABILITY MODEL

Assess the adequacy of the existing water resource portfolio.

Quantitatively assess and compare the value of new investments.

Consider the investments in conjunction with new operating strategies.

Assess the risks of interruptions to one or more supplies.

EDIT VIEW GRAPHICS MODEL RUN HELP 🍄 🐂 詞 🛼 Model 🕨 Dashboards 🕨 Main_Dashboard Santa Clarita Valley Water Agency Water Resources Reliability Mode Demand View Additional Output Demand Start Year **Banking Programs** Check box to turn on program Annual Supply Minus Demand Exceedance Probability Demand Scenario With Active Conservation (Positive numbers indicate a surplus of Table A supplies or Table A above the AVEK Aquaterra imum Art56 Target while negative numbers indicate a supply shortfall **Recycled Water** emitropic_NL Run Simulations with Recycled Water 🔽 Groundwate New Bank Alluvial Use Alluvial Groundwater **Exchange Programs** Saugus Use Saugus Groundwater Check box to turn on program AVEK Exchange UWCD Exchang **IRWD** Exchange New Exchange Simulate the Allocation of Excess Water (e.g. Rosedale Rio Bravo Exchange, Sales/New State Water Project Supplie .20000 -10000 20000 4000 Excahnges, etc.) Table A Allocations Percent of projected end-of-year End of Year Article 56 Balance Exceedance Probability Run Simulations with Table A excess SWP supplies to be sent to First Year of Historic Hydrologic Record RRB Exchange Program (%) First Year of Sequence (simulated) Last Year of Sequence (simulated) **Edit Additional Input** First Month (simulated) Edit Demand Data Simulate Article 56 Edit Imported Supplie Check box if simulations without Art56 follow new stragegy (if unchecked, uses Edit Local Supplies Simulate Article 56 Spills 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 220 Maximum End of Year Target (AF) 15000 End of Year Total Storage Balance Exceedance Probability (Includes Castaic Flex Storage) Minimum End of Year Target (AF) 10000 Simulate Castaic Flex Sites Reservoir Simulate Sites Reservoir Sites Reservoir Scenario Alt_1B ~ Other Firm Supplie Check box to use supply 20000 40000 60000 80000 100000 120000 14000

Saugus 4

Article 56

MBK strateav)

Castaic Flex

SCV WATER SYSTEM PORTFOLIO

METHODOLOGY

METHODOLOGY CONCEPTUAL FRAMEWORK OF RELIABILITY MODELING

METHODOLOGY

Multi-year sequences of wet and dry years.

State-of-the-practice assumptions for climate change, regulations, and future development of the SWP.

Variability of local groundwater during wet and dry periods.

30-year planning horizons.

Methodology Water Operations in a Single Time Step

Methodology Sample Statistical Summary over Multiple Plausible Hydrologic Traces

Order in which the use of second priority supplies is allocated is based on the projected end-of-year Article 56

METHODOLOGY Allocation of Second Priority Supplies

• Management of Article 56 Carryover in San Luis Reservoir provides the agency with additional storage but comes with the risk of spill.

METHODOLOGY Allocation of Second Priority Supplies

Case 1: EOY Article 56 Carryover Balance > Maximum Target Storage

- Prioritize using SWP supplies to meet demand.
- Send surplus water to flex, then to banking and exchange programs.

METHODOLOGY

Allocation of Surplus Supplies in Case 1.

SCV

WATER

METHODOLOGY

Allocation of Second Priority Supplies

Case 2: Minimum Target Storage < EOY Article 56 Carryover Balance < Maximum Target Storage

- Prioritize using SWP supplies to meet demand.
- Return to flex.
- No puts into or takes from banking and exchange programs.

METHODOLOGY Allocation of Second Priority Supplies

Case 3: EOY Article 56 Carryover Balance < Minimum Target Storage

- Prioritize using banked and exchange water to meet demand, then return to flex.
- After meeting demand, back up stored water into San Luis Reservoir.

METHODOLOGY Allocation of Supplies to meet Demand in Case 3.

SCENARIOS

SCENARIOS

		Prelim (without Article 56)	Base Scenario (with Article 56)	Scenario 1 (with Art56 & AVEK)
Demand with Active Conservation		Х	Х	х
Alluvium (2020	GSP)	Х	Х	Х
Saugus (2020 0	SSP)	Х	Х	Х
Dry Year Saugu	ıs (3-8)			
Recycled Water		Х	Х	Х
Table A (with climate change)		DCR 2021	DCR 2021	DCR 2021
Article 56	Max Target		15 TAF	15 TAF
Carryover	Min Target		5 TAF	5 TAF
SWP/Castaic flexible storage		Х	Х	Х
BVRRB		Х	Х	Х
Nickel Water		Х	Х	Х
Yuba		Х	Х	Х
Semitropic		Х	Х	Х
Semitropic NLF				
Rosedale Rio Bravo		Х	Х	Х
Rosedale Rio Bravo Exchange				
AVEK Exchange		Х	Х	Х
UWCD Exchange		Х	Х	Х
High Docort	Puts			20 TAFY
AVFK Bank	Takes			20 TAFY
	Max Storage			80 TAF

SCENARIOS - ASSUMPTIONS & INITIAL CONDITIONS

Existing Programs

	2024 Initial Balance (AF)	Max Storage (AF)
Semitropic Surcharge	20,970	-
Semitropic Bank	13,800	15,000
Rosedale Rio Bravo Bank	75,966	80,000
AVEK Exchange	2,250	-
UWCD Exchange	500	-
Article 56	10,000	20,000

Potential New Program

AVEK Program	Scenario 1
Maximum Storage	80,000 AF
Annual Puts	20,000 AF
Annual Takes	20,000 AF
Losses	10%
Program Start Year	2030
Program Last Year	2065
Initial Balance	0

ARTICLE 56 CARRYOVER STORAGE SIMULATIONS

BENEFITS OF ACCESS TO ARTICLE 56 CARRYOVER STORAGE

• The management of Article 56 in San Luis increases reliability of SCV Water's base supplies.

BENEFITS OF ACCESS TO ARTICLE 56 CARRYOVER STORAGE

The management of Article 56 Carryover in San Luis serves as a buffer and increases the reliability of SCV Water's base supplies.

BENEFITS OF ACCESS TO ARTICLE 56 CARRYOVER STORAGE

The management of Article 56 Carryover in San Luis decreases the magnitude of maximum supply shortfalls.

AVEK SIMULATIONS

SCENARIOS

		Prelim (without Article 56)	Base Scenario (with Article 56)	Scenario 1 (with Art56 & AVEK)
Demand with Ac	tive Conservation	х	Х	х
Alluvium (2020	GSP)	Х	Х	Х
Saugus (2020 G	iSP)	Х	Х	Х
Dry Year Saugu	s (3-8)			
Recycled Water		Х	Х	Х
Table A (with climate change)		DCR 2021	DCR 2021	DCR 2021
Article 56	Max Target		15 TAF	15 TAF
Carryover	Min Target		5 TAF	5 TAF
SWP/Castaic flexible storage		Х	Х	Х
BVRRB		Х	Х	Х
Nickel Water		Х	Х	Х
Yuba		Х	Х	Х
Semitropic		Х	Х	Х
Semitropic NLF				
Rosedale Rio Bravo		Х	Х	Х
Rosedale Rio Bravo Exchange				
AVEK Exchange		Х	Х	Х
UWCD Exchange		Х	Х	Х
High Docort	Puts			20 TAFY
AVEK Bank	Takes			20 TAFY
	Max Storage			80 TAF

AVEK SIMULATIONS

AVEK Program	Scenario 1
Maximum Storage	80,000 AF
Annual Puts	20,000 AF
Annual Takes	20,000 AF
Losses	10%
Program Start Year	2030
Program Last Year	2065
Initial Balance	0

COMPARISON BETWEEN BASE SCENARIO AND AVEK SCENARIO 1

Additional storage increases reliability, especially during extended periods of drought

COMPARISON BETWEEN BASE SCENARIO AND AVEK SCENARIO 1

Additional storage decreases the magnitude in supply shortfalls.

AVEK BANKING PROGRAM

Set AVEK parameters so they are non-constraining: **Puts & Takes = 65,000 AFY Maximum Storage = 175,000 AF**

Still can't achieve 100 % reliability because of: Availability of supplies Limits on aqueduct capacity (secondary)

Questions on what level of reliability we want to achieve

SUMMARY & NEXT STEPS

SUMMARY & NEXT STEPS

SCV Water now has a running water supply reliability model with several improvements: Monthly timestep Complex rules on the management of Article 56 Rules on banking program fills and takes

Access to and management of Article 56 Carryover storage serves as a buffer between dry and wet years and improves reliability by at least 10%.

Preliminary AVEK evaluations demonstrate the value of additional storage for improving reliability.

AVEK improves reliability by more than 15% by 2050.

AVEK reduces the magnitude of supply shortfalls by more than 25% by 2050.

One of the main constraining factors for filling AVEK (and other potential storage programs)is the availability of surplus water upon realization of increased demands in service area.

SUMMARY & NEXT STEPS

We can begin to assess the need and value of other projects inside and outside the service area. Investment in DCP. Investment in Sites Reservoir. Investments in Saugus dry year wells. Development of local groundwater recharge and recovery. New conservation measures. Investments in new banking programs.

Together with other tools, we can evaluate consequences of alternate local groundwater management and recycled water management scenarios in a much more comprehensive way. **Storage.**

Refined operating strategies.

Interaction with environmental flows.

EXTRA SLIDES

Scenarios

		Prelim (without Article 56)	Base Scenario (with Article 56)	Scenario 1 (with Art56 & AVEK)	Scenario 2 (with Art56 & AVEK)
Alluvium (2020 GSP)		Х	Х	Х	Х
Saugus (2020 (GSP)	Х	Х	Х	Х
Dry Year Saugus <u>(</u> 3-8)					
Recycled Wate	r	Х	Х	Х	Х
Table A (with climate change)		DCR 2021	DCR 2021	DCR 2021	DCR 2021
	Max Target		15 TAF	15 TAF	15 TAF
Article 56	Min Target		5 TAF	5 TAF	5 TAF
SWP/Castaic flexible storage		Х	Х	Х	Х
BVRRB		Х	Х	Х	Extra
Nickel Water		Х	Х	Х	Х
Yuba		Х	Х	Х	Х
Semitropic		Х	Х	Х	Х
Semitropic NLF					
Rosedale Rio Bravo		Х	Х	Х	Х
Rosedale Rio Bravo Exchange					
AVEK Exchange		Х	Х	Х	Х
UWCD Exchange		Х	Х	Х	Х
	Puts			20 TAFY	30 TAFY
AVEK Bank	Takes			20 TAFY	30 TAFY
	Max Storage			80 TAF	100 TAF

SENSITIVITY ANALYSIS TO THE ARTICLE 56 TARGETS

Prelim (No Art 56)

Sase_0_10 (Art.56 Targets: Min = 0 TAF, Max = 10 TAF)

Base_5_5 (Art.56 Targets: Min = 5 TAF, Max = 5 TAF)

■ Base_5_15 (Art.56 Targets: Min = 5 TAF, Max = 15 TAF)

Base_0_5 (Art.56 Targets: Min = 0 TAF, Max = 5 TAF)
Base_0_15 (Art.56 Targets: Min = 0 TAF, Max = 15 TAF)
Base_5_10 (Art.56 Targets: Min = 5 TAF, Max = 10 TAF)

Base_10_10 (Art.56 Targets: Min = 10 TAF, Max = 10 TAF)

AVEK SIMULATIONS

AVEK Program	Scenario 1	Scenario 2
Maximum Storage	80,000 AF	100,000 AF
Annual Puts	20,000 AF	30,000 AF
Annual Takes	20,000 AF	30,000 AE
Losses	10%	
Program Start Year	2030	2030
Program Last Year	2065	2065
Initial Balance	0	0

COMPARISON BETWEEN BASE SCENARIO AND AVEK SCENARIO 1

AVEK further extends the life of RRB

COMPARISON BETWEEN BASE SCENARIO AND AVEK SCENARIOS 1 & 2

COMPARISON BETWEEN BASE SCENARIO AND AVEK SCENARIOS 1 & 2

SENSITIVITY ANALYSIS OF SCENARIO 1 TO ARTICLE 56 TARGETS (AVEK PUTS & TAKES = 20 TAFY, MAX STORAGE = 80 TAF)

Sc1_10_10 (Art.56 Targets: Min = 10 TAF, Max = 10 TAF) = Sc1_10_15 (Art.56 Targets: Min = 10 TAF, Max = 15 TAF)

SENSITIVITY ANALYSIS OF SCENARIO 2 TO ARTICLE 56 TARGETS (AVEK PUTS & TAKES = 30 TAFY, MAX STORAGE = 100 TAF)

Sc2_0_5 (Art.56 Targets: Min = 0 TAF, Max = 5 TAF)
 Sc2_0_15 (Art.56 Targets: Min = 0 TAF, Max = 15 TAF)
 Sc2_5_10 (Art.56 Targets: Min = 5 TAF, Max = 10 TAF)
 Sc2_10_10 (Art.56 Targets: Min = 10 TAF, Max = 10 TAF)

- Sc2_0_10 (Art.56 Targets: Min = 0 TAF, Max = 10 TAF)
- Sc2_5_5 (Art.56 Targets: Min = 5 TAF, Max = 5 TAF)
- ≡ Sc2_5_15 (Art.56 Targets: Min = 5 TAF, Max = 15 TAF)
- = Sc2_10_15 (Art.56 Targets: Min = 10 TAF, Max = 15 TAF)

AVEK SIMULATIONS SENSITIVITY ANALYSIS

SENSITIVITY ANALYSIS WITH THE AVEK BANKING PROGRAM

